where Mathematics meets Biology

Leelavati Narlikar l.narlikar@ncl.res.in

An interesting series of numbers

F: 1,1,2,3,5,8,13,21,34,... (value)

n: (1) (2) (3) (4) (5) (6) (7) (8) (9) (index) (plural is *indices*)

- Can you guess the next number?
- Each number is the sum of previous two:
 F(1) = 1
 F(2) = 1
 F(3) = F(2) + F(1) = 1 + 1 = 2
 F(4) = F(3) + F(2) = 2 + 1 = 3
 F(5) = F(4) + F(3) = 3 + 2 = 5

Some cute properties of the series

F:
$$1, 1, 2, 3, 5, 8, 13, 21, 34, ...$$
 (value)
n: $(1) (2) (3) (4) (5) (6) (7) (8) (9)$ (index)

• Every third value starting from F(3) is always even

even + odd = oddodd + odd = even

Leonardo Fibonacci 1170 - 1250

Developed this series to solve a *biological* problem

Predict the rabbit population

 Suppose a newly born pair of rabbits (a male and a female) are put in a field

How many rabbits will there be after one year?

What assumptions?

- Rabbits take one month to mature
- After that they produce a new pair of rabbits every month
- Each new pair is always one male and one female
- No rabbit ever dies

Rabbit population

Rabbit population

Rabbit population

• This model makes many unrealistic assumptions!

- rabbits don't die
- females always give birth to a male & a female
- they necessarily reproduce every month

But we do see Fibonacci series in nature

- Some plants display it: when it pulls out a new shoot, it has to grow for sometime (let's say) 2
 months before it is strong enough for branching
- New shoot branches every month

http://www.maths.surrey.ac.uk

Anti-clockwise spirals in cauliflower

1,1,2,3,5,8,13,21,34,...

Back to rabbits: Fibonacci is not realistic

- What needs to be added to the model?
 - chance of rabbits dying naturally
 - chance of female giving birth to more/less pups
 - chance of another herbivore competing for carrots
 - chance of getting eaten by a predator
 - chance of contracting a disease
 - chance of a natural calamity droughts, earthquake

 Probability of an event is a number between 0 and 1 that reflects your "belief" in the event happening

 Probability of an event is a number between 0 and 1 that reflects your "belief" in the event happening

 Suppose you toss a coin, what is the probability that you will get a Head?

What if it is a Sholay coin?

How do you estimate the probability?

- Toss the coin 100 times, count the Heads
- Toss it 1000 times, 10000 times...
- You estimate the *parameters* from data
- How about dice?

Make your own die

Guessing game for a fair die

- Your friend rolls a die, you have to guess what number will turn up
- All numbers 1 to 6 in a fair die are equally likely
- You can pick any number...
 - you will be right around 1 in 6 times

Graphically speaking...

What about *two* fair dice?

- Outcome of two dice = sum of individuals
- All 1-6 numbers are equally likely for *each* die

Back to the guessing game

- Your friend rolls two fair dice, you have to guess what sum will turn up
- What are the possibilities?
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- Are all outcomes 2 to 12 equally likely?
- Let us do an experiment to find out

possible outcomes										
	□ □ 2	 3	<u> </u>	 6	 7	<u> </u> <u> </u> 8	9	10	<u> </u> <u> </u> 11	12

Back to the guessing game

Is that it? Or are there more ways we can get a 5?

Let us count all outcomes

 $\leftarrow \text{ second die } \rightarrow$

- first die -

	0	0	•••			
•	2	3	4	5	6	7
•	3	4	5	6	7	8
•••	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

How often does each outcome show up?

T

first die

← second die →

	•	•	000			
•	2	3	4	5	6	7
•	3	4	5	6	7	8
•°°	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

So what is the probability?

How often would 7 appear?

6 out of 36 times

- What is the probability of 7 appearing?
 6/36 = 0.1667
- What is the probability of 4 appearing?
 3/36 = 0.0833

outcome	ways
2	1
3	2
4	3
5	4
6	5
7	6
8	5
9	4
10	3
11	2
12	1

36

So what is the probability?

outcome	ways	probability
2	1	1/36 = 0.027778
3	2	2/36 = 0.055556
4	3	3/36 = 0.083333
5	4	4/36 = 0.111111
6	5	5/36 = 0.138889
7	6	6/36 = 0.166667
8	5	5/36 = 0.138889
9	4	4/36 = 0.111111
10	3	3/36 = 0.083333
11	2	2/36 = 0.055556
12	1	1/36 = 0.027778

Graphically... what is the probability?

You got a different *distribution* of the outcomes by using two dice.

See what you get when you use three dice (at home)

Back to the rabbits

- Incorporate probabilities
 - birth
 - gender
 - weather/natural calamities
- growth of carrots
- multiple populations
 - competitors and predators
- Assumptions are key

Probability distribution for number of pups

How do we know if our model is right?

- How can we "count" the number of rabbits?
- Method called "mark and recapture"

Mark and recapture

- 1. Capture a sample of *M* rabbits
- 2. Mark the *M* rabbits
- 3. Send them back in the field

M:N

4. Capture another sample of *n* rabbits

total number $\boldsymbol{X}N$ of rabbits

- ✓ M number of marked rabbits
- n number of rabbits captured 2nd time

m number of marked rabbits in 2nd set

Jackdaw with a ring

source: wikipedia

Snail marked with a number

source: wikipedia

Mark and recapture

- Assumptions
 - Marks should not fall off!
 - No population growth/loss between the two captures
 - The animals don't move out or move in to the field
 - A marked animal does not become easier or more difficult to catch the second time
 - Time between two samples is key

Why are we interested?

- Develop a model that will estimate the population of rabbits over a period of time
- How does it change with inputs?
- Not only for rabbits, but to predict forest cover, wildlife numbers etc.

Make your own *loaded* die

attach a small piece of cardboard

Math in molecular biology

Loads of mathematical modeling there!

DNA: code for life

Building block of DNA

Single strand of DNA

Four types of nucleotides:

A: adenine C: cytosine G: guanine T: thymine

Double stranded DNA

Adapted from Molecular Biology of the Cell

The human genome

12,000,000,000 nucleotides!

ghr.nlm.nih.gov

1500 nucleotide region of chromosome 6

... GGCTCCCCAGAACTGGCTGGGCCCCTGGGGACAGAGCCACCCCATGAGCTCGGGGTCCACCAGTGTG CATTCCCCAACGGGGGGGGGGGGGGGGGGGGCCCCACAGCTCTGGGGCCTCTTTTGCCCCTTTAGGGGCTGTTGCTA ATTTGTGCCACACGCATGGGCATTGCAGCCTTGCGCTGTCCCAGGCATGCAGCTGCCTGGGGGCCCAAGTT **TCTTGGGCTGAGTGCAGCCAAAGGGGGAGCCAGAAATGGGCAGTTCTCCCCAGGGAGTGAGCAGCTACTGTA** ACTTTTTTAAATTAAGACAAAAAGCCTTGAAGAAAATGACTTTATTTTTCTAAGTGTAACCTCAGTATTT GCATAGGGGGGGGGGGGTCTTTTACCCTGTGTCAGAGCCTACCTTCACCACCTATATCCAGAAGGGGAGCTT TTTCAGAAACAGGGCAGCAGTGGGGGTGAAATTTTCTTAACCCCCTAAGACTGCCTTCAGTAGGAACAAGCT GGCTTCTGTGATTAGGTGAAGGGATGGGGGGAAGATTTTATGCACAGCCTAGTTATCAAGGGGGATGATTTG CCGACATGTTTGAGAACCCCCTAACCTCTAACCCTCATTGCTGTCTTGCCCCCAGTTTGGGGGTGCCAAGAT GGAAGTCACCTTTCTGGGCTTTCTCCTGGAGATAGCTGGGGCTTATGGGTGGCTTTCAAGGCTGGGGCAT GTGTGAGCGTGGCCTTGGGGAGGACATGCGTGTGTCAGGGATGAGTTGAGGTGATATTTTTATGTGCAGCG GTGTGCTTGAATGTGAGTGTGTATGTCAGTGGTTTCTACTTCCCCCTGGGATGCTGACCCAGGAATAGTGG ATTTTTGTGCACAGACTGTGGGGGTCTTTGGTTC...